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Rupture energy of a pendular liquid bridge
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Abstract. We propose a simple expression for the rupture energy of a pendular liquid bridge between
two spheres, taking into account capillary and viscous (lubrication) forces. In the case of capillary forces
only, the results are in accordance with curve fitting expressions proposed by Simons et al. [2] and Willett
et al. [5]. We performed accurate measurements of the force exerted by liquid bridges between two spheres.
Experimental results are found to be close to theoretical values. A reasonable agreement is also found
in the presence of viscous forces. Finally, for small bridge volumes, the rupture criterion given by Lian
et al. [10] is modified, taking into account additional viscous effects.

PACS. 68.10.-m Fluid surfaces and fluid-fluid interfaces – 62.10 Mechanical properties of liquids.

1 Introduction

The presence of an interstitial liquid within a granular
assembly can have a significant effect on the mechanical
behaviour of the medium, with respect to its dry coun-
terpart. The formation of liquid menisci at contacts be-
tween grains generally induce capillary forces increasing
the strength of the system. For example, the enhancement
of the cohesion can have harmful effects on granular flows
by jamming the discharge of silos [1]. On the other hand,
this binding effect can be beneficial and is used in a wide
range of manufacturing processes involving powder gran-
ulation. In such dynamic systems, the formation of ag-
glomerates appears to be related to the balance between
the rupture energy of liquid bridges and the particles ki-
netic energy. In addition, the fracturation of the resulting
agglomerates involves liquid bridges rupture and its as-
sociated rupture energy. Although the behaviour of such
particles assemblies is still hardly predictable by means of
micro-mechanical models, the knowledge of simple expres-
sions to describe interactions at the microscopic scale is
nevertheless of practical interest.

The rupture energyWcap of pendular liquid bridges be-
tween spherical particles has been investigated by Simons
et al. [2–4] in the case of perfect wetting conditions. The
authors considered a toroidal bridge geometry and calcu-
lated the integral of the quasi-static capillary forces with
respect to the separation distance. They obtained a non-
trivial integral expression, which was solved in an approx-
imate manner. A simple expression was then derived by
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curve fitting:

W̃cap =
Wcap

σR2
≈ c Ṽ 0.5 (1)

where σ is the surface tension of the liquid / air interface,
R is the radius of the spheres, Ṽ = V/R3 is the dimen-
sionless bridge volume and c is a constant equal to 3.6.
Expression (1) was found to be in reasonable agreement
with the limited amount of available experimental data
at the time [2]. In a recent experimental work, Simons
et al. [4] observed a large spread within their data and
concluded that the value of the constant c seems to be
dependent on liquid viscosity, whilst the power term is
dependent on the bridge geometry (contact angle).

On the other hand, Willett and Seville [5] calculated
the dependence of W̃cap on the contact angle (θ) and pro-
posed a new expression for c, keeping the power term un-
changed:

W̃cap ≈
2Ṽ 0.5

0.45− 0.08θ+ 0.3θ2
· (2)

While equation (1) is based on capillary forces only,
Ennis et al. indicated that if the liquid (binder) is suffi-
ciently viscous, the interaction is dominated by lubrication
forces [6]. In this paper, we propose an analytical expres-
sion for the rupture energy, taking into account capillary
and viscous interactions. The theoretical predictions are
compared to accurate measurement results for the force
exerted by a pendular liquid bridge between two spheres,
in the absence and in the presence of viscous effects. The-
oretical considerations are given in the next part, experi-
mental equipment and experiments are presented in part
three. The results are then discussed, before we conclude.
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Fig. 1. Liquid bridge between two spheres.

2 Theory

2.1 Capillary adhesion

For small amounts of liquid, gravity effects can be ne-
glected, and the static attractive force due to the meniscus
can be expressed as the sum of the capillary force and the
axial component of surface tension forces acting on the
spheres [7]:

Fcap = 2πRσ sinφ sin(φ+ θ)−∆PπR2 sin2 φ (3)

where φ is the half-filling angle (see Fig. 1). The difference
in hydrostatic pressure across the interface (∆P ) is then
constant and related to the local mean curvature Γ and
to the surface tension by the Young-Laplace equation:

∆P = σ2Γ (4)

where Γ can be expressed as a function of the cylindrical
coordinates of the radial profile of the liquid-gas interface:

2Γ =
1

r [1 + (dr/dz)2]1/2
− d2r/dz2

[1 + (dr/dz)2]3/2
· (5)

For given values of θ and V , equation (5) can be solved
analytically in terms of elliptic integrals [8] or numerically
(see reference [9] for more details about the resolution pro-
cedure). One alternative to exact methods is to consider
a circular approximation for the meridian profile of the
interface. One of them, the “gorge method”, gives total
forces within 10% of those obtained by means of an exact
numerical technique [10]. The force takes then the simple
closed-form expression:

Fcap = πρ2
2∆P + 2πρ2σ = πσρ2

[
1 +

ρ2

ρ1

]
ρ1 =

D/2 + R(1− cosφ)
cos(φ+ θ)

ρ2 = R sinφ− [1− sin(φ+ θ)]ρ1


(6)

where ρ1 and ρ2 are respectively the radius of the merid-
ian profile and the radius at the neck (see Fig. 1). In
equation (6), φ has to be determined from geometrical
considerations. Following a different approach and in the

Fig. 2. Evolution of capillary forces with the separation dis-
tance. Comparison of equation (7) with numerical results for
three bridge volumes (0.001, 0.01 and 0.1).

limit of small liquid volumes, a simplified expression can
be derived for the dimensionless capillary force F̃cap as a
function of the liquid volume [11,12]:

F̃cap =
Fcap

σR
' 2π cos θζv, with ζv= 1−

(
1 +

2Ṽ
πD̃2

)−1/2

·

(7)

The values given by equation (7) have been found to be
overestimated with respect to exact calculation and exper-
imental results at small separation distances and underes-
timated at large separation distances [12]. A comparison of
the values with numerical results is presented in Figure 2
for three values of the dimensionless bridge volume: 0.001,
0.01 and 0.1. It is shown that equation (7) provides a rea-
sonable approximation for estimating the average force.

The rupture energy W̃cap can then be calculated by
integrating the capillary force with respect to the separa-
tion distance, between zero and the quasi-static rupture
distance [10]:

D̃s
rupt '

(
1 +

θ

2

)
Ṽ 1/3. (8)

Using (7), the following expression for W̃cap is ob-
tained:

W̃cap =
∫ D̃rupt

0

F̃capdD̃

= 2π cos θ

(1 + θ/2)(1−A)Ṽ 1/3 +

√
2Ṽ
π

 (9)

where A is given by A =
(

1 + 2Ṽ 1/3/π(1 + θ/2)2
)1/2

.
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Fig. 3. Evolution of the factor ζ2
v with the separation distance

for three bridge volumes (0.001, 0.01 and 0.1).

2.2 Lubrication forces

The mechanics of thin liquid films are described by the
well-known Reynolds equation, which relates the pres-
sure P generated in the liquid to the relative displacement
of the two solid surfaces [13]:

d
dr

[
rH3(r)

dP (r)
dr

]
= 12ηr

dD
dt

(10)

where H(r) = D + r2/R and η is the liquid viscosity.
Integrating twice equation (10) over a distance equal to
the radius of the wetted area, the following expression can
be derived for the dimensionless attractive viscous force
acting on the spheres [12]:

F̃visc =
Fvisc

σR
=

3
2
π
Ca

D̃
ζ2
v (11)

where Ca = ην/σ is the Capillary number and ν

the spheres velocity (relative displacement). For D̃ close
to 0.1, the deviation of the lubrication expression with
respect to a higher order analysis [14] is less than 5%.
Note that the latter expression differs from the one pro-
posed by Ennis et al. [15] by the factor ζ2

v . Figure 3
presents the evolution of this factor with respect to the
dimensionless separation distance for three values of the
dimensionless bridge volume: 0.001, 0.01 and 0.1. It is
shown that in the case of small liquid amounts, ζ2

v (and
the related viscous force) is drastically decreased whereas
this effect is moderate for larger bridge volumes. Note also
that the ratio of viscous to capillary forces is proportional
to Caζv/D̃.

Fig. 4. Experimental liquid bridge apparatus. An image of
a bridge of viscous liquid (during the rupture process: see
Sect. 4.2) is presented on the right (the bright point in the
liquid filament is an optical artefact).

The viscous impulse is then derived as followed:

W̃visc =
Wvisc

σR2
=
∫ D̃rupt

D̃m

F̃viscdD̃

=
3
2
πCa

[
ln
(

A
√
π

(1 +A)2

)
− f(D̃m)

]
(12)

with f(D̃m) = lnD̃m − 2ln

(D̃m) +

√
D̃2

m +
2Ṽ
π


+

1
2

ln(πD̃2
m + 2Ṽ )

where D̃m represents some dimensionless characteristic
length scale of surface asperities.

3 Experimental

3.1 Experimental arrangement

An apparatus was constructed for measuring the resul-
tant vertical forces exerted by a viscous liquid meniscus
strained between two moving spheres. The main part of
this apparatus is schematically shown in Figure 4. The
meniscus is formed between two polished ruby spheres of
radius R = 4 mm (±1 µm). The upper one is bolted under
the arm of a counter-reaction scale (Sartorius MDRA200)
which allows the measurement of the vertical force ap-
plied to the sphere without displacement of it. Attractive
forces can be measured in the range 0–6 N with a preci-
sion of 10 µN. The other sphere is bolted to a metallic
rod guided along the vertical axis by two planar springs.
The rod can be moved up and down by means of a motor-
driven differential micrometer screw allowing the increase
or decrease of the spheres separation distance at a con-
stant velocity. The separation distance can be adjusted in
the range 0–1 mm and the displacement velocities can be
varied from 0.01 to 15 µm/s. A displacement sensor tracks
the position of the rod with a precision of about 1/4 µm.
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Table 1. Properties of the liquids used during the experiments.

Liquids Surface Tension (mN/m) Viscosity (mPa s)

1 (PDMS Oil) 21 0.1

2 (PDMS Oil) 21 100

The element described above stands in a large ther-
mostated cell (generally T = 25 ± 0.2 ◦C). A small ther-
mostated chamber can be used to maintain locally the
spheres at a temperature significantly different from the
ambient temperature. A lens and a camera (connected to
a computer) allow us to save images of the contact region.

3.2 Materials

Bridge materials and related properties (25 ◦C) are pre-
sented in Table 1. The angles of contact of oils with the
ruby spheres were found to be in the range 0–10◦. The
value of θ will be taken equal to 10◦ in every theoretical
evaluation.

3.3 Experimental procedure

First, we measure the position for which contact between
spheres is detected (non-zero force detected). This refer-
ence position allows us to pull the spheres apart with a
known separation distance (D). An amount of liquid is
then inserted in the contact region with a syringe. Images
of the contact region before and after the formation of the
meniscus and some image processing allow the determina-
tion of the bridge volume with a precision of about 5%.
Several accommodation cycles of spheres approach and
separation are generally performed before starting the
measurements in order to obtain a perfect axisymmetric
bridge.

4 Results and discussion

4.1 Capillary regime

Measurements were performed with liquid 1 during the
increase of D at a low rate: ν = 0.01 µm/s. Typical ex-
amples of the results obtained for the attractive capillary
force are presented in Figure 5 for dimensionless bridge
volumes equal to 0.001 and 0.023. The values given by ex-
pressions (7) as well as curves corresponding to the exact
numerical resolution are also plotted: a close agreement is
observed. Best fits of the F̃ = f(D̃, Ṽ ) plots obtained for
several values of the dimensionless bridge volume allow the
determination of the rupture energy as a function of Ṽ .
Results are compared to the values given by expression (9)
and presented in Figure 6. It is shown that the theoretical
values are in very close agreement with the experimental
one, reflecting the ability of equation (7) to average the
capillary force. Comparisons of equation (9) with exact
calculation and expressions proposed by Simons et al. (1)

Fig. 5. Evolution of capillary forces with the separation dis-
tance. Comparison of experimental results with theoretical val-
ues for two bridge volumes (0.001, 0.023).

Fig. 6. Rupture energy of a pendular liquid bridge (capillary
forces only) as a function of the bridge volume: comparison of
experimental results with equation (9).

and Willett et al. (2) are presented in Figure 7 as a func-
tion of Ṽ . It can be seen that our results are in close
agreement with the numerical calculation for all dimen-
sionless bridge volumes in the range 0.001–0.1. On the
other hand, it can be seen that the power law exponent
proposed by Simons et al. is above the theoretical average
value, close to 0.46. As a consequence, deviations are ob-
served for lower and higher values of Ṽ when using equa-
tions (1) and (2) respectively. Nevertheless all theoretical
values remain close each other, indicating that experimen-
tal discrepancies reported by Simons et al. seem to result
from experimental difficulties in force measurements.

The dependence of the contact angle on the rupture
energy is presented in Figure 8. It appears that for every
bridge volume considered, equation (9) underestimates the
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Fig. 7. Rupture energy of a pendular liquid bridge (capillary
forces only) as a function of the bridge volume: comparison of
equation (9) with equations (1) and (2). The squares represent
a numerical evaluation.

numerical results at high θ values. The predictions can
be significantly improved by introducing an adjustment
coefficient: (1 + θ/2π), so that the rupture energy is thus
rewritten as followed:

W̃cap ' 2π cos θ
(

1 +
θ

2π

)

×

(1 + θ/2)(1−A)Ṽ 1/3 +

√
2Ṽ
π

 · (13)

The results presented in Figure 8 indicate that the
rupture energy is just weakly dependent on the contact
angle, for values below 30◦: the increase in bridge rupture
distance compensates the decrease of the average capil-
lary force. Besides, a non-monotonic behaviour can be ob-
served.

4.2 Influence of viscosity effects

Results for the attractive force measured during the in-
crease of the separation distance are presented in Figure 9
for a volume of liquid 2 approximately equal to 0.5 µl. The
volume of liquid was chosen small enough for the corre-
sponding rupture distance to be smaller than the maxi-
mum separation gap (1 mm) for all separation velocities.
Note that for ν ≤ 5 µm, force measurements correspond-
ing to D̃ ≤ 0.004 (0.012 for ν = 10 µm) are not presented:
with the present equipment, an acceleration slope is re-
quired to reach the imposed separation velocity. Figure 9
shows that the viscous forces dominate for the smallest
values of D̃ whereas interactions are dominated by cap-
illary forces for the highest separation distances. As re-
ported by several authors [15–17], the dynamic attractive
force measured can be several orders of magnitude higher
than the corresponding static one. Adding the capillary

Fig. 8. Rupture energy of a pendular liquid bridge (capillary
forces only) as a function of the solid/liquid contact angle for
three bridge volumes (0.001, 0.01 and 0.1). The squares repre-
sent a numerical evaluation.

Fig. 9. Evolution of the total attractive force (capillary and
lubrication forces) exerted by a liquid bridge stretched between
two spheres at a constant velocity. Experimental results are
compared with equation (14).

and viscous contributions expressed by equations (7, 11)
leads to the simple expression for the total force:

F̃tot = F̃cap + F̃visc = 2π cos θζv +
3
2
π
Ca

D̃
ζ2
v . (14)

Values given by equation (14) are plotted in Figure 9,
showing a good agreement with experimental results.
Some discrepancies appear at low separation distances,
possibly due to the influence of surface asperities. It was
checked that these discrepancies can be slightly reduced
by introducing an additional effective separation distance
(D̃ + D̃m) in the viscous term expression. Summing the
capillary (Eq. (13)) and viscous (Eq. (12)) terms, the total
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Fig. 10. Evolution of the total rupture energy (including vis-
cous effects) of a pendular liquid bridge as a function of the cap-
illary number: experimental results are compared with equa-
tions (15, 16), proposed by Ennis et al. [15].

rupture energy expresses as followed:

W̃tot = W̃cap + W̃visc. (15)

Rupture energies corresponding to the theoretical and
experimental curves presented in Figure 9 (0.004 ≤ D̃ ≤
0.1) have been calculated. Results, presented in Figure 10
as a function of the capillary number, show a good agree-
ment. Deviation observed for the highest value of Ca re-
flects the slight overestimation of the viscous force at small
separation distances. Note that we observed an increase of
the bridge rupture distance as a function of the spheres
velocity. Nevertheless, as the force contribution is minor
at these large separation distances, this effect will not be
taken into account at the time and will be considered sep-
arately (see end of this section). The rupture energy based
on the following expression for the total force [15]:

F̃tot = F̃cap +
3
2
π
Ca

D̃
= πρ̃2

[
1 +

ρ̃2

ρ̃1

]
+

3
2
π
Ca

D̃
(16)

is also presented in Figure 10. It can be seen that the use
of the latter leads to a significant overestimation with re-
spect to experimental values as soon as viscous effects are
present. This appears to result from the drastic influence
of the factor ζ2

v (see Fig. 3).
Evolution of W̃tot given by equation (15) can then be

plotted as a function of Ṽ for several values of the cap-
illary number. The curves are presented in Figures 11a
and 11b for two values of D̃m: 0.05 and 0.01 respectively.
It can be seen in Figure 11a that for Ca < 1, viscosity
effects become significant for large liquid bridge volumes
only, so that a transitional regime is observed. As a result,
the power law exponent must be increased in equation (1),
while the value of c seems to remain unchanged. This be-
haviour is opposite to conclusions of Simons et al. [4]. As

(a)

(b)

Fig. 11. Evolution of the total rupture energy (including
viscous effects) of a pendular liquid bridge as a function of
the bridge volume for several values of the capillary number.
(a) dimensionless characteristic length scale of surface asperi-
ties D̃m = 0.05 (b) D̃m = 0.01.

expected, the total rupture energy is efficiently increased
as Ca exceeds unity, even for small bridge volumes. The
influence of the length scale Dm can be assessed by com-
paring Figures 11a and b: the rupture energy is drasti-
cally increased, especially for small liquid bridges, reflect-
ing the diverging behaviour of the viscous force at small
separation distances. In addition, it can be seen in Fig-
ure 11b that over the volumes range considered, the results
can be correctly described by a power law exponent close
to 0.5. In contrast with the results obtained for D̃m = 0.05,
this behaviour is in agreement with conclusions of Simons
et al. [4]: the value of c increases as viscous effects become
dominant.
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In the presence of viscosity effects, the bridge rup-
ture does not occur instantaneously during the spheres
separation process, so that the dynamic bridge rupture
distance (Dd

rupt) can be significantly larger than the
corresponding static one. This was qualitatively ob-
served during experiments on liquid bridges between two
spheres [18] and quantitatively in the particular case of
slender liquid bridges (of moderate viscosity) stretched
between two disks moved apart at a relatively high
speed [19] (in this case the triple line is fixed on the disks
perimeter). Measurement of the evolution of the liquid
bridge rupture distance, expressed by:

∆Drupt =
Dd

rupt −Ds
rupt

Ds
rupt

(17)

is plotted in Figure 12 as a function of Ca. The results, ob-
tained for an intermediate value of in the range 0.001–0.1,
clearly indicate that the rupture distance increases as the
sphere velocity increases: for ν = 10 µm/s (Ca ≈ 0.05)
(Dd

rupt), is 20% larger than the corresponding (Ds
rupt).

A power law exponent can be identified over two decades
for Ca:

∆Drupt = Ca1/2. (18)

This power law seems to be hardly predictable through
simple theoretical considerations. In fact, the rupture
mechanism is associated to a complex interface deforma-
tion process. The image presented with Figure 4 clearly
shows that the bridge rupture proceeds in the formation
of a thin liquid filament linking the two volumes of liquid
resting on the spheres. Note also the high value of the
apparent dynamic solid/liquid contact angle and the
particular conical shape of the liquid remaining on each
sphere. Nevertheless, the rupture criterion (8) can now
be reformulated in the case of a dynamic rupture process:

D̃d
rupt = (1 + θ/2)(1 + Ca1/2)Ṽ 1/3. (19)

5 Conclusion

We performed accurate measurements of the force exerted
by a liquid bridge on two spheres separated at a constant
velocity, in the absence and in the presence of viscosity
effects, in the case of good wetting conditions. In the cap-
illary regime, we proposed an analytical expression (13) for
the dimensionless rupture energy of the bridge, expressed
as a function of the bridge volume and the contact angle.
It has been shown that the values given by this expression
are very close to exact numerical calculations and experi-
mental data. These results were also found to be in good
agreement with existing curve fitting relations (1, 2).

Fig. 12. Increase of the bridge rupture distance (V = 0.5 µl)
as a function of the capillary number.

In the case of additional viscous effects, we modified
expression (13) by adding a viscous term (12) and pro-
posed an analytical expression for the total rupture en-
ergy (15). The predictions were found to be in good agree-
ment with experimental data. When plotting the total
rupture energy as a function of the capillary number Ca,
a linear curve was obtained, the slope of which has been
found to be proportional to the factor ζ2

v . This behaviour
is in contrast with rupture energies calculated from the
total force expression proposed by Ennis et al. [15]. The
latter does not take into account the bridge volume depen-
dance and the resulting values significantly overestimate
experimental one. With respect to the model proposed by
Simons et al., we showed that the value of the parameter c
(see Eq. (1)) do not necessary depend on liquid viscosity.
In addition, it was shown that the power law exponent
proposed by these authors could be significantly increased
in the presence of viscosity effects.

The bridge rupture distance was measured as a func-
tion of the spheres velocity. We observed that the dynamic
rupture distance D̃d

rupt could be increased with respect to
its static counterpart. The increase of the rupture distance
was found to be simply related to Ca. In this respect, a
modified expression for the rupture criterion proposed by
Lian et al. [10] has been proposed.

Nomenclature

Ṽ = V/R dimensionless bridge volume

σ surface tension

R spheres radius

Fcap and Fvisc capillary and viscous forces

F̃ = F/σR dimensionless force
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Wcap and Wvisc capillary and viscous bridge rupture
energies

W̃ = W/σR2 dimensionless rupture energy

θ solid/liquid contact angle

φ half-filling angle

∆P difference in hydrostatic pressure across the
liquid/air interface

Γ local mean curvature of the interface

r, z cylindrical coordinates

ρ1 radius of the meridian profile of the liquid/air
interface

ρ2 radius at the neck of the bridge

D̃ = D/R dimensionless separation distance

ζv = 1− (1 + 2Ṽ /πD̃2)−1/2

D̃s
rupt quasi-static bridge rupture distance

D̃d
rupt dynamic bridge rupture distance

A = (1 + 2Ṽ 1/3/π(1 + θ/2)2)1/2

P liquid pressure

η liquid viscosity

H(r) = D + r2/R

ν relative spheres velocity

Ca = ην/σ Capillary number

D̃m dimensionless characteristic length scale of asperities

∆Drupt = (Dd
rupt −Ds

rupt)/Ds
rupt
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